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a b s t r a c t

Aspect-level sentiment analysis is a fine-grained sentiment classification task that aims to identify the
sentiment polarity of specific aspects in online reviews. Attention mechanisms and graph convolu-
tional networks have recently been widely used to model associations between aspects and opinion
words. However, these methods face challenges in accurately modeling the alignment of aspects and
exploiting multiaspect sentiment dependencies due to the limitations of dependency trees and the
complexities of online reviews. In this paper, we propose a novel adaptive marker segmentation graph
convolutional network (AMS-GCN) for aspect-level sentiment analysis. Specifically, the proposed AMS-
GCN model enhances the information capacity of words by merging marker information from two
datasets and uses an adaptive marker segmentation module to divide different marker information into
separate modules. Furthermore, the model employs bi-syntax-aware and semantic auxiliary modules
to obtain syntactic and semantic information. The bi-syntax-aware module combines component and
dependency trees to capture comprehensive syntactic information. In contrast, the semantic auxiliary
module uses an attention score matrix to capture the semantic association information of each word.
Moreover, the aspect-related graph is devised to aggregate information about the sentiment of different
aspects. Experiments on several benchmark datasets demonstrate that the proposed model achieves
state-of-the-art results.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Due to the growing popularity of social media, sentiment
nalysis has emerged as a crucial topic in natural language pro-
essing [1,2]. Unlike traditional sentiment analysis tasks (i.e.,
entence-level and document-level), aspect-level sentiment anal-
sis is more fine-grained. Aspect-based sentiment analysis aims
o determine the polarity (e.g., positive, neutral, or negative) of
he target aspect in a sentence [3–6]. For example, as shown in
ig. 1, in the sentence ‘‘The phone is wonderful, but the bat-
ery and the performance are poor’’, three aspects are discussed:
‘phone’’, ‘‘battery’’ and ‘‘performance’’ and their sentiment po-
arities are positive, negative, and negative respectively. There
re three main ABSA tasks, aspect extraction [7–9], aspect de-
ection [10,11], and sentiment classification [12–15]. This paper
ocuses on sentiment classification for specific aspects.

To effectively tackle the ABSA task, it is essential to model
he relationship between aspects and contexts [16,17]. Attention
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mechanisms have been widely adopted in ABSA models [18–20]
and have successfully solved single-aspect terms. However, at-
tention mechanisms are less effective when dealing with phrasal
aspect terms and multiple-aspect sentences, as noise can more
readily impact performance. For instance, the following is an
example: ‘‘The falafel was rather overcooked and dried, but the
chicken was fine’’. In this example, the viewpoint word ‘‘fine’’
receives more attention about ‘‘falafel’’, despite referring to a dif-
ferent aspect, namely ‘‘chicken’’. Therefore, it can be challenging
for attention mechanisms to solve multifaceted sentences and
phrasal aspect terms effectively.

According to some research results in recent years, the re-
lationship between aspect and context can be analyzed based
on syntactic structure [21,22], such as graph attention networks
(GATs) and graph convolutional networks (GCNs) [23–26]. Syn-
tactic dependency trees can be employed to model long-distance
dependencies between words and contexts. However, extracting
sentiment dependencies across clauses from syntactic depen-
dency trees can be challenging due to their inherent structure.
As illustrated in Fig. 1, the connection between ‘‘wonderful’’ and
‘‘poor’’ inhibits the ability to capture the sentiment polarity of
each aspect. Furthermore, although syntactic dependency trees

https://doi.org/10.1016/j.knosys.2023.110559
https://www.elsevier.com/locate/knosys
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Fig. 1. (a): An example sentence for the ABSA task in a restaurant review, which includes three aspects. (b): Results of dependency tree parsing.
Fig. 2. Component tree for ‘‘The phone is wonderful, but the battery and the performance are poor’’. Rounded rectangles represent phrase types.
create relationships between words, they cannot solve complex
relationships such as conditions, oppositions, and joins. Thus, it
becomes difficult to model the dependencies between multiple
aspects.

In this paper, we propose a novel adaptive marker segmen-
ation of graph convolutional networks (AMS-GCN) to address
he abovementioned challenges. First, we combine marked in-
ormation on words from two identical datasets uniquely. The
ata merging module (DM) then expands the word-marked in-
ormation, such as ‘‘tok’’, ‘‘aspects’’, ‘‘dephead’’, ‘‘head’’, ‘‘deprel’’,
nd ‘‘pos’’, to provide clearer syntactic and semantic information
o subsequent processing. Second, we identified that too much
ord-marked information could lead to information redundancy,
egatively impacting the model’s performance. To overcome this,
e designed an adaptive marker segmentation module (AMS) to
egment different word-marked information for the subsequent
i-syntax-aware modules and semantic auxiliary modules. The
MS module dramatically improves the model’s applicability by
dapting the marker information.
Furthermore, a bi-syntax-aware module is designed to

ombine syntactic information from dependency trees and
2

component trees [27]. In general, component trees provide a
more precise segmentation of phrases and hierarchical structures
that facilitate the identification of various aspects and viewpoint
words. Through phrase segmentation, it is possible to segment
sentences into subclauses. In a hierarchical structure, the rela-
tionship between different aspects can be distinguished, and the
sentiment dependence of different aspects can be judged. As
shown in Fig. 2, the phrase splitter ‘‘but’’ splits the two clauses,
‘‘the phone is wonderful’’ and ‘‘the battery and the performance
are poor’’. In the first layer, the word ‘‘and’’ reflects the connected
relationship between ‘‘battery’’ and ‘‘performance’’. In the third
layer, the term ‘‘but’’ reflects the adversarial relationship between
the phone and the other two aspects. In parallel, aspect-related
graphs were constructed for internal contexts to aggregate the
sentiment information of each aspect. Extracting phrase-level
syntactic information from the component tree and its depen-
dency tree’s syntactic information, is particularly significant. We
also introduced a semantic auxiliary module to extract semantic
association information between words. Finally, we designed a
fusion module to combine the bi-syntax-aware and semantic
auxiliary modules’ output.
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Our main contributions are as follows:

• We propose a novel adaptive marker segmentation graph
convolutional network (AMS-GCN) to address multiple as-
pects and aspect-specific sentiment dependencies.

• We design the DM module to integrate the word marker
information and then adaptively divide the marker informa-
tion by the AMS module.

• AMS-GCN captures syntactic and semantic information in
a dual-channel manner. Moreover, aspect-related sentiment
information is aggregated with aspect-related graphs.

• We conduct experiments on four benchmark datasets, and
the experimental results demonstrate the validity of our
model in ABSA.

The rest of this paper is organized as follows. In Section 2,
we introduce related work. Next, Section 3 presents a detailed
description of the model characteristics. Then, we compare our
model with other models in Section 4. Finally, conclusions and
directions for future work are presented in Section 5.

2. Related work

In this section, we present related work on aspect-level
sentiment analysis from recent years. First, we introduce
some classic aspect-based sentiment analysis methods. Second,
we introduce two popular approaches, attentional mechanisms
and graph neural networks.

2.1. Aspect-based sentiment analysis

As a more fine-grained entity-oriented sentiment classification
task, aspect-based sentiment analysis (ABSA) aims to identify
the sentiment polarity of specific aspects [6,28–30]. There are
numerous applications of sentiment analysis in the field of nat-
ural language processing (NLP) [31,32], such as recommendation
systems [33,34] and chatbots [35–38]. Early approaches to sen-
timent analysis relied on handcrafted features, which made it
difficult to model the relationships between aspects and contexts
[12,39–41]. To enhance sentiment dictionaries, lexicon-based
functions have been developed to perform sentiment analysis
[42–44]. Most of these studies used SVMs to construct sentiment
classifiers, including bag-of-words methods and sentiment dic-
tionaries [45]. However, it is critical to note that the quality of
features has a tremendous influence on the results.

In addition, feature engineering is a labor-intensive process.
As a result of outstanding performance in various NLP tasks,
neural networks are gaining popularity in sentiment analysis.
Classical models, such as recurrent neural networks, recurrent
tensor neural networks [46], LSTM [47], and Tree-LSTM [48], are
effective in sentiment analysis. However, it is still challenging to
distinguish between different emotional orientations at a fine-
grained level. Deep learning has been used to construct more
nuanced semantic associations between aspects and contexts to
address this issue.

2.2. Attention-based approach

Attention-based neural network models’ performance is supe-
rior to traditional neural networks. Various neural networks have
been proposed to implicitly model the semantic relationships
between aspects and contexts based on attention. For instance,
Wang et al. [18] proposed an attention-based LSTM for identifying

aspect-related sentiment information. A multigranular attention

3

network was designed by Fan et al. to capture word interactions
between aspects and contexts [49]. Chen et al. [20] used recurrent
neural networks to combine long-distance sentiment information
with multiple attention mechanisms. For the same reason, Tang
et al. [50] employed a deep memory network based on external
memory and multi-hop attention. Ma et al. [19] proposed an
interactive attention network to learn attention interactively in
context and target. Additionally, the pretrained language model
BERT [51] has significantly improved NLP tasks, including ABSA.
Gao et al. [52] developed three target-dependent variants of the
BERT base model, and their effectiveness was demonstrated. Xu
et al. [53] explored a novel post-training method to retrain BERT
and apply the result for sentiment classification.

2.3. Graph neural network based approach

Recently, the combination of graph neural networks and de-
pendency trees has led to remarkable results in various NLP
tasks, such as text classification [54,55] and relationship extrac-
tion [56,57]. Graph neural networks are utilized to model depen-
dency trees and encode syntactic information through syntactic
dependency trees. Several studies have explored this idea by
leveraging syntactic structure information to learn node repre-
sentations from their neighbors. Zhang et al. [58] used graph con-
volutional networks on dependency trees of sentences to exploit
syntactic information and word dependencies. Wang et al. [25]
built ordinary dependency trees into aspect-oriented dependency
trees and then encoded this node information using graph at-
tention networks. Tang et al. [59] proposed a dependency graph-
enhanced dual-transformer network to enhance the dependency
graph representation and the dual-transformer planar represen-
tation. Li et al. [26] designed a dual graph convolutional network
to jointly consider the syntactic information of the dependency
tree and the semantic relevance between words. Tian et al. [60]
proposed a type-aware graph convolutional network that explic-
itly exploits ABSA dependency types and adopts attention layers
to integrate different levels of learning. However, since multiple
aspects can introduce noise, it is crucial to consider how ABSA
tasks can learn about the dependencies among the target aspects
and how they affect each other.

Graph convolutional networks and attention mechanisms are
shown to improve the model’s performance in ABSA. We present
a novel model in this paper based on these previous works. Syn-
tactic information and semantic associations are extracted from
two-channel convolutional networks with adaptive segmentation
in the model. The AMS module is used for the adaptive partition-
ing of word inputs. The bi-syntax-aware and semantic auxiliary
modules encode their respective input information to obtain an
enhanced aspectual feature representation. Finally, aspect-related
graphs are utilized in the bi-syntax-aware module to emphasize
the affective dependencies between different aspects.

3. Methodology

In this section, we present the structure of our proposed
AMS-GCN model. The overall architecture of AMS-GCN is shown
in Fig. 3. It is composed of four parts: data preprocessing, a
word embedding layer, a bi-syntax-aware module, and a semantic
auxiliary module.

3.1. Problem description

In this section, we will mathematically define the ABSA task.
Suppose the sentence-aspect pair is (S, A), where S = {w1, w2,

. . . , wn} denotes a sentence and A = {a1, a2, . . . , am} denotes a
redefined set of aspects, usually a subsequence of the sentence
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Fig. 3. The overall architecture of AMS-GCN, mainly consists of four components: data preprocessing, word embedding layer, bi-syntax-aware module, and semantic
auxiliary module.
S, where n and m are the number of words in S and the number
f aspects in A, respectively. It is convenient to consider the

multiple-word aspect as a word, denoting the i-th word in S.
The goal of ABSA is to predict the sentiment polarity y ∈ {−1,

0, 1} for each aspect A in sentence S. There are three polarities of
entiment, negative, neutral, and positive, which are denoted by
he numbers −1, 0, and 1, respectively.

.2. Data preprocessing

In this section, we will discuss the basic methods of working
ith datasets and how to segment datasets adaptively. As a result
f the data extension, the dataset has a broader capacity for
ord information. Two subsequent modules receive the marker
daptive segmentation output: the bi-syntax-aware module and
he semantic auxiliary module. Syntactic and semantic informa-
ion should be explicitly available to the bi-syntax-aware and
emantic auxiliary modules.

.2.1. DM module
As shown in Fig. 3, the DM module merges data labels from

wo identical datasets, thereby augmenting the data. For instance,
ome researchers have annotated the Laptops dataset with five
ategories of information (e.g., ‘‘token’’, ‘‘aspects’’, ‘‘pos’’, ‘‘head’’,
‘deprel’’), while others have used seven categories of information
e.g., ‘‘token’’, ‘‘aspects’’, ‘‘postag’’, ‘‘dephead’’, ‘‘pos’’, ‘‘conhead’’,
‘maphead’’). With the DM module, the Laptops dataset is ex-
anded to have nine categories of marked information (e.g., ‘‘to-
en’’, ‘‘aspects’’, ‘‘pos’’, ‘‘head’’, ‘‘deprel’’, ‘‘postag’’, ‘‘dephead’’,
‘conhead’’, ‘‘maphead’’).

Additionally, it can be expressed in mathematical form. We
erge the same datasets, D1 and D2, that contain different word-
arks. It is important to note that we take D1 as the base during

the merging process and keep its format unchanged while adding
D2’s data markers.

Simultaneously, the markers in the D1 dataset are retained

hen merging the same markers. The merged dataset D’s final

4

output is the following input. The process of merging D1 and D2
is described in Algorithm 1.

Algorithm 1 Merge information markers from two datasets

Input: Input the original file format of the two datasets D1 and
D2, and represent the markers in them with M1 and M2
respectively.

Output: Output the merged dataset, and store the merge
markers.

1: Initialize a list D to store the merged data, and a dictionary
dic to save the merged marks.

2: Open D1 with data defined as F , open D2 with data defined as
F1;

3: for i = 1→ n do
4: where n represents the maximum length of D1;
5: if M1,i ∈ D1 == M2,i ∈ D2 then
6: Fi ← Fi.append(M1,i), where append indicates an add

operation;
7: dic ← Fi
8: else
9: F1 i ← F1 i.append(M1,i)

10: dic ← F1i
11: end if
12: D← append(dic)
13: end for
14: return D

3.2.2. AMS module
As shown in Fig. 3, the AMS is designed to enable adaptive

segmentation of the merged dataset for subsequent modules.
First, a threshold range, also known as the adaptive division
length, is established based on the function of the submodule.
Second, the AMS module can perform adaptive division according
to the predetermined threshold range. For instance, consider a
Laptops dataset with nine types of label information after the DM
module is applied, where we set a threshold range of 5. After
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pplying the AMS module, the dataset is divided into two kinds
f tagging information.
Due to the different contents input by each BERT module, it

s impossible to feed data D into both BERT modules directly.
nstead, the adaptive marker segmentation module (AMS) divides
he corresponding markers into upper and lower BERT mod-
les, as shown in Algorithm 2. Then, the input information is
daptively segmented in subsequent modules using the adap-
ive segmentation algorithm. As a result, the capacity of word
nformation is expanded, and semantic information is enhanced.

Algorithm 2 Adaptive marker segmentation algorithm

Input: Enter the merged marker D and apply adaptive segmen-
tation with the AMS module.

Output: Output the corresponding segmentation information
markers T1 and T2.

1: Set thresholds h1 and h2 to control input markers, initialize
the new dictionary dic1 and dic2, and use marks to indicate
the keys of the dictionary;

2: di denotes the number of input marks;
3: for each i ∈ D do
4: if 0 ≤ di ≤ (control threshold h1) then
5: T1 ← dic1.append(i), where append indicates an add

operation;
6: else h1 ≤ di ≤ h2 && i /∈ T1
7: T2 ← dic2.append(i)
8: end if
9: end for

10: return T1, T2

3.3. Word embedding layer

Using contextual representations can improve natural lan-
uage comprehension abilities, thus improving performance. Each
ord wi in a sentence is embedded into a continuous low-
imensional vector space using a word embedding matrix. The
ERT system has gained popularity in recent years due to its ex-
ellent word embedding representations and high performance.
he embedding matrix is usually initialized with embeddings
rom a pretrained model (BERT) to obtain a specific representa-
ion of each context and aspect word. The structure of BERT is
hown in Fig. 4. Given the target sequence, we first use
ERT− SPC to construct a BERT-based sequence:

ERT− seq = [CLS] + {wi} + [SEP] + wa + [SEP] (1)

Then, for the input context and aspect words ws
i and wa

j , we
btain the word embedding vectors os

i ∈ Rdw and oa
j ∈ Rdw for

the context and aspect words, denoted as follows:

os
i = BERT

(
ws

i

)
oa
j = BERT

(
wa

j

) (2)

where dw denotes the dimension of the word embedding.

3.4. Bi-syntax-aware module

After gaining the embedding representation of each word in
Section 3.3, we encode this syntactic information with a bi-
syntax-aware module. In the bi-syntax-aware module, there are
two main parts: the intra-encoder and the inter-encoder. They
are applied to create aspect-specific representations by modeling
the perceptual context for each aspect. Finally, the corresponding
feature representations are fused using the SYF module.
5

3.4.1. Intra-encoder
This section models the sentiment-aware context of each as-

pect with a syntactic encoder, and the internal encoder is shown
in Fig. 5. Then, aspect-specific representations are created using
syntactic information from the parsed dependency tree and the
rebuilt component tree. We use this module several times for
multiple aspects of the sentence. There are multiple layers of
graph attention (MGAT) in our encoder. Each block is composed
of multiple graph attention network layers that encode syntactic
information in layers with the aid of dependency trees. Addi-
tionally, we consider both the component trees’ phrase-level
syntactic information and the dependency trees’ syntactic infor-
mation. Notably, graph construction makes the MGAT block so
powerful.

Graph construction As Fig. 5 illustrates, we follow the syn-
tactic structure of the component tree from top to bottom. The
input text is composed of several phrases at each level of the
component tree. There are separate semantic blocks within each
phrase. For example, in Fig. 1, ‘‘The phone is wonderful, but the
battery and the performance are poor’’. We construct relevant
graphs based on these phrases. For each layer of the phrase
composition, we construct the corresponding adjacency matrix
(CTA) to represent the connection between each word. The CTA
construction formula is as follows:

CTAl
i,j =

{
1 if wi, wj in same phrase
0 otherwise (3)

MGAT The multilayer graph attention block encodes syntacti-
cal information into word representations in a hierarchical man-
ner. Multiple GAT layers are stacked on top of one another to
achieve adaptive matching. The GAT layers aggregate neighbor
node information with an attention mechanism. The formula is
as follows:

αlz
ij =

exp
(
f
(
es,l−1i , es,l−1j

))
∑

j′∈N l(i) exp
(
f
(
es,l−1i , es,l−1j′

)) (4)

es,li =∥
Z
z=1 σ

⎛⎝ ∑
j∈N l(i)

αlz
ijW

lz
V e

s,l−1
j

⎞⎠ , (5)

ês,li = FC
(
es,li + ês,l−1i

)
(6)

where N l(i) is the set of neighbors of wi in layers l and ês,li is the
final representation of wi in layer l. W lz

V is the trainable parameter
of the zth head of layer l. αlz

ij is a normalized attention coefficient
computed by the zth attention at layer l. f is a function measuring
the correlation of two vectors, Z is the number of heads of
attention and FC is a fully connected feedforward network.

The syntactic dependency tree provides syntactic information
about the sentence. To obtain its associated adjacency matrix
(DTA), we construct the matrix as follows:

DTAk
i,j =

{
1 if wi, wj link directly in dependency tree
0 otherwise (7)

Furthermore, we have devised methods for combining the
dependency and component trees syntax information. For fusion,
we construct the adjacency matrix DTA of the syntactic depen-
dency tree and an adjacency matrix CTA of the component tree.
There are three different approaches to integration.

A. Dot product operation For each layer in the CTA, only
the neighbors in the DTA that are also in the same phrase are
considered.

FA = CTA · DTA (8)
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B. Additive operations For each layer in the CTA, only consider
ords from the same phrases and neighbors in the DTA.

A = CTA+ DTA (9)

C. Conditional addition operations This operation considers
he syntactic information of the phrase segmentation items in the
TA and the syntactic information of the clauses in the DTA.

A = CTA⊕ DTA (10)

t =

[
ôt
t ; ê

t
t

]
(11)

Thus, the intra-encoder contains syntactic information about
he dependency and component trees. Where ôt

t and êtt represent
the feature representation of the word embedding and the feature
representation of the last layer of the intra-encoder, respectively.
vt denotes the final feature representation of the intra-encoder
module.

3.4.2. Inter-encoder
In intra-encoder modules, it is impossible to model the links

between multiple aspects well because the impact of aspects on
each other is ignored. Therefore, we create aspect-related graphs
to model cross-aspect connections and aggregate sentiment infor-
mation between aspects in the inter-encoder module. Moreover,
the module’s input is based on a precise representation of the
6

intra-encoder. Its structure is shown in Fig. 6. Aspect relations
can be revealed by segmentation terms, such as conjunctions.
To solve this problem, we developed a regular function RF that
returns the phrase splitting term of two aspects. When given
two aspects, the first step would be to find their lowest common
ancestor in the tree of components. The next step is to look for
the internal branch between the two aspects within the subtree.
There are only two aspects of information in the tree and very
scant irrelevant context. If the internal branch exists, RF returns
all the words in the internal branch, otherwise, it returns the
words between the two aspects. The formula is as follows:

RF
(
ai, aj

)
=

{
{wk} , if

⏐⏐Bw

(
ai, aj

)⏐⏐ = 0
Bw

(
ai, aj

)
, otherwise

(12)

here i < k < j and Bw return the words in the internal branches
f the two aspects ai and aj.
Aspect-dependent graphs As distance increases, the effect

etween aspects decreases. Considering that all aspects degrade
omputational performance due to long-distance dependencies,
nly adjacent aspects are considered. Using the RF function, we
btained the phrase segmentation terms and constructed the
spect-related graph. As shown in Fig. 7, two adjacency matrices
re constructed to distinguish the interactions between aspects.
n addition to addressing the positive relationship between as-
ects, it also addresses the negative relationship between aspects.
he conclusion of the intra-encoder module’s output, v , is used
t
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Fig. 6. The overall architecture of the inter-encoder.
Fig. 7. Aspect-related graphs for distinguishing aspect bidirectional relations.
L

w
s

s input, together with the corresponding phrase segmentation
tems. MGAT has then been applied again as a relational encoder
o obtain an enhanced representation va

t of each aspect.

.4.3. Syntax feature fusion
The final representation of the bi-syntax-aware module is

btained by fusing the output representation of the intra-encoder
odule with the output representation of the inter-encoder mod-
le. The formula is as follows:
syn
t = SYF

[
vt; v

a
t

]
(13)

.5. Semantic encoder

The bi-syntax-aware module may extract syntactic and partial
emantic information. Thus, a semantic auxiliary module has
een introduced to capture more semantic information. In this
odule, the attention matrix operates primarily through the self-
ttention mechanism, and then the semantically relevant terms
or each word are extracted from the GCN-encoded attention ma-
rix. A feature of this module is the use of the AMS module, which
eads to different input information than the bi-syntax-aware
odule.
A parallel calculation of the attention score for each element is

erformed by self-attention. For our SemGCN, we take the atten-
ion score matrix M sem as the adjacency matrix of the SemGCN,
hich can be formulated as:

sem
= softmax

(
QW Q × (KW K )T

√
d

)
(14)

here W Q and W K are learnable weight matrices, while Q and K
epresent graphical representations of word embedding layers. In
 p

7

addition, d is the dimension of the input node features. The atten-
tion score matrix is obtained using a single self-attention head.
After obtaining the adjacency matrix, we encode this adjacency
matrix with the GCN module to obtain the final representation of
the semantic auxiliary module g sem

t = {hsem
a1 , hsem

a2 , . . . , hsem
am }. The

hidden representation formula is updated as follows:

hl
i = σ

⎛⎝ n∑
j=1

M ijW lhl−1
j + bl

⎞⎠ (15)

where W l is a weight matrix, bl is a bias term, and σ is an
activation function.

3.6. Model training

The outputs of the bi-syntax-aware module and the semantic
auxiliary module were combined to form the final representation,
which was subsequently fed to the softmax activation layer
(i.e., the sentiment classifier) to generate probabilities for the
three sentiment polarities. Finally, we utilize the cross-entropy
loss function to guide the optimization and training of AMS-GCN.

ot = [g
syn
t ; g

sem
t ]

p(t) = softmax
(
W pot + bp

) (16)

C = −
∑

(s,a)∈D

∑
c∈C

log p(t) (17)

here W p and bp are parameters of the classifier. D contains all
entence-aspect pairs, and C is the collection of distinct sentiment

olarities.
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Table 1
Statistics of the four datasets.
Dataset Positive Neutral Negative

Train Test Train Test Train Test

Restaurants 2164 727 637 196 807 196
Laptops 976 337 455 167 851 128
Twitter 1507 172 3016 336 1528 169
MAMS 3380 400 5042 607 2764 329

4. Experiment

4.1. Datasets

We conducted experiments on four benchmark datasets, in-
luding the SemEval2014 [61] restaurant reviews (Restaurants)
nd laptop reviews datasets (Laptops), the ACL14 Twitter [62]
atasets, and the MAMS [63] datasets. There are both multi-
spect and single-aspect sentences in the restaurant and laptop
atasets. Each sentence in the MAMS dataset contains at least two
spects of sentiment. The statistics of the four datasets are shown
n Table 1.

.2. Experimental settings

In our experiments, Biffine Parser is used for dependency
arsing. We represent words with the final hidden state of the
retrained BERT model and fine-tune it in the task. The word em-
edding dimension is 768, the batch size is 32, and the maximum
entence length is 100. The depth of GCN layers in the model
rchitecture is set to 2, and the dropout rate is set to 0.2. We
se the Adam [64] optimizer to optimize all parameters of the
raining process. The learning rate and BERT learning rate are set
o 3e−5 and 2e−5, respectively. To prevent overfitting, we set the
random dropout rate to 0.1. In addition, accuracy and Macro-F1
metrics are used to assess the model’s performance.

4.3. Baseline methods

In this section, we compare our proposed AMS-GCN model
with some other baseline models, including attention-based mod-
els, graph neural network (syntactic dependency tree) models,
and models based on the BERT method. Details of the baseline
models are as follows:

A. Attention-based baseline methods:

• ATAE-LSTM [18] is an attention-based long and short-term
memory network that explores the links between aspects
and context.
• IAN [19] employs interactive attention mechanisms to in-

teractively learn the context and aspect-specific representa-
tions.
• RAM [20] devises an approach that combines multiple atten-

tion mechanisms and recurrent neural networks to enhance
the representational power of the model.
• TNet [65] converts contextual embeddings into target-

specific embeddings and extracts significant sentiment fea-
tures with CNNs.
• MGAN [49] proposes a multigrained attention mechanism

for capturing interactions between aspects and contexts.
• BERT [51] is a pretrained language representation model,

that uses a bidirectional transformer for pretraining.

B. Baseline methods based on graph neural networks:

• TD-GAT [23] designs a target-dependent graph attention
network for sentiment classification leveraging the depen-

dency relationships between words.

8

• ASGCN [58] exploits the syntactic dependency structure of
sentences to solve the long-range multiple word depen-
dency problem in sentiment classification.
• BiGCN [24] designs an interactive graph convolutional net-

work to learn information from syntactic and lexical graphs.
• CDT [21] enhances the contextual embedding representa-

tion of bidirectional long-term memory network learning
with graph convolutional network GCN.
• R-GAT [25] uses a relational graph attention network (GAT)

to encode a dependency tree structure with the target as the
root.
• DGEDT [59] proposes a graph-dependent augmented two-

transformer network that interactively learns a planar rep-
resentation from the transformer and a graphical represen-
tation from the dependency graph.

C. BERT-based baseline methods:

• TD-BERT [52] proposes a target-related BERT model with
multiple variants for sentiment classification.
• DGEDT+BERT [59] is equivalent to the DGEDT approach but

employs BERT as the aspect-based encoder.
• R-GAT+BERT [25] is identical to the R-GAT method but uses

BERT as an encoder for word embedding.
• T-GCN [60] is a type-aware graphical convolutional network

that demonstratively exploits the ABSA dependency types
and proposes an attention layer to integrate learning.
• DM-GCN-BERT [66] adopts a dynamic multichannel GCN

to jointly model syntactic semantic structures for enriched
feature representation.
• DualGCN+BERT [26] proposes a dual graph convolutional

network that considers both the complementary nature of
syntactic structure and semantic relevance.

4.4. Comparison results

Experimental results demonstrate that the proposed AMS-GCN
outperforms most comparable models, including attention-based,
graph network, and BERT models, as shown in Table 2. This model
performs better than the previous model proposed for aspect-
level analysis. In particular, the proposed AMS-GCN significantly
outperforms previous attention-based methods (ATAE-LSTM, IAN,
RAM, TNet, MGAN, BERT) when modeling context. This indi-
cates that the two-channel graph neural network can effectively
model the context. Compared to the model using BERT individ-
ually, AMS-GCN can extract aspect-related information from the
embedding representation generated by BERT. Moreover, when
exploiting word dependencies and semantic correlations between
words, AMS-GCN significantly outperforms GCN-based models
(TD-GAT, ASGCN, BiGCN, CDT), illustrating the efficacy of the two-
channel graph neural network in combining syntactic and seman-
tic information. Furthermore, AMS-GCN outperforms previous
models with heavy GCN (R-GAT, DGEDT) usage, which implies
that it can improve GCN models’ ability to extract sentiment in-
formation. Additionally, AMS-GCN can capture the semantic cor-
relation between words with additional semantic modules, vastly
improving aspectual information’s representational capability.

In comparing AMS-GCN to other BERT models on four datasets,
the AMS-GCN model demonstrated significantly better perfor-
mance. Moreover, in comparison to DM-GCN-BERT, AMS-GCN
was able to achieve comparable performance despite relatively
poor results. This is because the AMS-GCN model uses a two-
channel GCN to learn emotional information, leading it to achieve

the best results in the baseline model.
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Table 2
Overall performance of different methods on the four datasets. Acc represents accuracy, and F1 represents the Macro-F1 score. The best
results are in bold face, and the second best are underlined. The results with ‘‘†’’ are retrieved from published papers, and ‘‘−’’ indicates
not reported. Others are reported based on the open source codes.
Category Model Restaurants Laptops Twitter MAMS

Acc F1 Acc F1 Acc F1 Acc F1

Att.

ATAE-LSTM 77.20 – 68.70 – – – – –
IAN† 78.60 – 72.10 – – – 76.60 –
RAM 80.23 70.80 74.49 71.35 69.36 67.30 – –
TNet† 80.69 71.27 76.54 71.75 74.90 73.60 – –
MGAN 81.25 71.94 75.39 72.47 72.54 70.81 – –
BERT 85.62 78.28 77.58 72.38 75.28 74.11 – –

Graph.

TD-GAT† 80.35 76.13 74.13 72.01 72.68 71.15 – –
ASGCN† 80.77 72.02 75.55 71.05 72.15 70.40 – –
BiGCN 81.97 73.48 74.59 71,84 74.16 73.35 – –
CDT† 82.30 74.02 77.19 72.99 74.66 73.66 80.70 79.79
R-GAT 83.30 76.08 77.42 73.76 75.57 73.82 – –
DGEDT† 83.90 75.10 76.80 72.30 74.80 73.40 – –

BERT.

TD-BERT 85.10 78.35 78.87 74.38 – – – –
DGEDT+BERT† 86.30 80.00 79.80 75.60 77.90 75.40 – –
R-GAT+BERT 86.60 81.35 78.21 74.07 76.15 74.88 – –
T-GCN† 87.41 82.23 81.97 78.71 78.03 77.31 83.68 83.07
DM-GCN-BERT† 87.66 82.79 80.22 77.28 78.06 77.36 – –
DualGCN+BERT 87.13 81.16 81.80 78.10 77.40 76.02 – –

Ours AMS-GCN+BERT 88.15 82.32 82.42 79.28 78.52 77.72 85.57 85.22

The improvement of AMS-GCN over baseline is significant at the 0.01 level.
4.5. Ablation study

An ablation study was carried out to further analyze AMS-
CN’s impact, and the results are presented in Table 3. It is
vident from the table that the model’s performance degrades
n the absence of adaptive segmentation (AMS). An important
eason is that the AMS module refines the input features, leading
o more accurate aspect feature representations extracted by
he multichannel GCN module. Moreover, the model performs
orst on all datasets without the bi-syntax-aware module. The
i-syntax-aware module accurately extracts syntactic feature rep-
esentations of contexts and aspects, and establishes affective
ependencies between aspects and contexts. Therefore, removing
his module is not conducive to extracting sentiment information
etween aspects and contexts. In contrast, the model performs
etter without the semantic auxiliary module. While semantic
uxiliary modules can provide semantic information to the de-
endencies between contexts and aspects, syntactic information
s more critical for extracting the sentiment features of sentences.
dditionally, simple semantic information is also derived when
xtracting sentence syntax information, and additional semantic
nformation can increase the information representation of the
odel. Furthermore, removing the ‘‘intra-encoder’’ will result in
degradation of the model performance. This shows that the

omponent and dependency trees in the ‘‘intra-encoder’’ are es-
ential for generating convolutional graphs. In particular, using
n ‘‘intra-encoder’’ to extract syntactic information about the
ontext and aspects of a sentence can largely facilitate the model
n predicting the sentiment polarity of a specific aspect. It should
lso be noted that removing the ‘‘inter-encoder’’ slightly reduces
he model’s performance. The aspect-related graphs in the ‘‘inter-
ncoder’’ can establish connections between aspects, enhancing
he feature representation of aspects to improve the performance
f multiaspect sentiment prediction.

.6. Model analysis

This section presents the experimental results of AMS-GCN.
irst, we examine the impact of adaptive segmentation on the
esults. Second, we investigate the rationale behind layering the
ultilayer graphs of attention. Finally, we analyze how the num-

er of aspects in a sentence influences the results.

9

4.6.1. Impact of the AMS module
The adaptive marker segmentation (AMS) module refines the

input form of words, resulting in a more accurate word-dependent
representation and the ability to predict aspects of sentiment. To
evaluate the impact of the AMS module, we conducted experi-
ments on the Laptops dataset by adjusting the thresholds h. The
results are shown in Fig. 8, demonstrating that the accuracy was
higher when using the AMS module than without it, regardless
of the threshold h. Furthermore, further refining the word input
with this module is possible. We also observed that both model
accuracies fluctuate when the threshold h is greater or less than
the original data length. This indicates that the AMS module
divides the marker information too much or too little, which can
affect the final feature representation. Additionally, we found that
the model performs optimally when the threshold h is equal to
the original data length. This suggests that extracting useful sen-
timent information involves delineating the appropriate marker
information.

4.6.2. Impact of MGAT layers
To analyze the effect of MGAT depth, we varied the number

of MGAT layers from 1 to 8. We presented the experimental
results on the four benchmark datasets in Fig. 9. We observed
that two layers of MGAT achieve overall better performance than
other numbers of MGAT layers. Therefore, we set the number of
MGAT layers to 2 in our experiments. However, the single-layer
MGAT layer needed to be improved in accuracy and Macro-F1
scores on all four datasets, indicating its incapability to explore
the sentiment features of specific sentences. Moreover, as the
number of layers of MGAT increased, the model’s performance
tended to degrade when the depth of the model exceeded 2.
This suggests that excessive MGAT layers can lead to increased
parameters, which reduces the learning capability of the model.

4.6.3. Impact of multiple aspects
Based on previous work, the key to the ABSA task is to model

the connections between aspects and perspectives to determine
the emotional polarity of different aspects. Our experimental
results illustrate the effect of multiaspect sentences with various
numbers of aspects on the performance of AMS-GCN. To better

demonstrate the validity of the proposed model, we compare our
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Table 3
Experimental results of the ablation study. The best results are in bold face. ‘‘AMS’’ represents the adaptive segmentation
module, ‘‘BiSyn’’ represents the bi-syntax-aware module, ‘‘Sem’’ represents the semantic auxiliary module, ‘‘Intra’’ represents
the intra-encoder, and ‘‘Inter’’ represents the inter-encoder.
Model Restaurants Laptops Twitter MANS

Acc F1 Acc F1 Acc F1 Acc F1

AMS-GCN w/o AMS 87.51 81.56 81.75 77.92 77.92 76.97 84.86 84.79
AMS-GCN w/o BiSyn 86.05 80.79 81.02 77.06 77.06 76.65 84.15 84.07
AMS-GCN w/o Sem 87.45 81.76 81.59 77.92 77.76 76.81 84.75 84.67
AMS-GCN w/o Intra 86.92 81.32 81.10 77.70 77.50 76.62 84.34 84.35
AMS-GCN w/o Inter 87.96 82.06 82.12 78.45 78.26 77.21 85.16 85.03
AMS-GCN 88.15 82.32 82.42 79.28 78.52 77.72 85.57 85.22

The improvement of AMS-GCN over other ablation models is significant at the 0.01 level.
Fig. 8. Accuracy on the Laptops dataset with and without the AMS module.
Fig. 9. The impact of the number of the MGAT layers of the proposed AMS-GCN. Accuracy and Macro-F1 scores based on different numbers of MGAT layers are
eported.
10
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Fig. 10. The impact of multiple aspects in the sentences.
roposed model with other GCN-based models on the Laptops
ataset, and the results are shown in Fig. 10. We noticed that
hen the number of aspects in a sentence was less than 3, the
ccuracy of all GCN models tended to increase as the number of
spects increased. The possible reason is that when the sentence
ontains fewer aspects, the constructed dependency graph may
e relatively simple, and the GCN-based model is relatively easy
o learn. However, for other GCN-based models, the performance
ignificantly decreases as the number of aspects exceeds 3. One
pparent reason is that GCN models using dependency trees alone
annot establish sentiment dependencies between aspects when
ealing with multiaspect sentences. In contrast, our proposed
MS-GCN model shows slight fluctuations in model accuracy as
he number of aspects increases and still achieves good perfor-
ance. Notably, including component trees and aspect-related
raphs enhances the sentiment dependence on a given aspect.
e did not analyze sentences with aspect numbers more signif-

cant than seven because there are no more examples to make
meaningful comparison. A multiaspect sentence’s performance
an still be improved over simple sentences. There is the veri-
ication of the effectiveness of introducing component trees and
spect-related graphs in AMS-GCN from both sides.

.7. Attention visualization

We demonstrate how the proposed AMS-GCN model enhances
spectual sentiment prediction by comparing the attention
eights of two sentences extracted from restaurant and laptop
eviews, as shown in Fig. 11. We selected sentences with more
han two aspects and used a darker shade to represent the weight
f each word. The diagram indicates that in the first sentence,
he contextual word ‘‘pleased’’ is essential in determining the
motional polarity of the three aspects, namely ‘‘log on’’, ‘‘WiFi
onnection’’, and ‘‘battery life’’. It implies a closer semantic re-
ationship than contextual words, such as ‘‘and’’. Additionally,
he composition tree assigns a certain weight to words without
motional polarities, such as ‘‘and’’ and ‘‘to’’. The word ‘‘same’’
s more significant when dividing sentiment polarity into two
spects. Despite the negative word ‘‘crappy’’, the word ‘‘same’’
ndicates the sentiment polarity of the aspect. As demonstrated
n these multiaspect examples, our proposed AMS-GCN model
ccurately identifies the sentiment polarity of different aspectual
ords.
11
4.8. Case study

As shown in Table 4, we provide several examples of the use
of different models to illustrate the advanced capabilities of our
proposed AMS-GCN model. In this case, we highlight the words
that indicate aspects with yellow and blue colors. In the first ex-
ample, attention-based approaches such as IAN and MGAN focus
on the word ‘‘fine’’. However, complex sentences often fail to
connect aspects and opinions through dependency graphs (syn-
tactic dependency trees). In the second sample, the aspect word
‘‘music’’ is relatively distant from the syntax of the viewpoint
word, causing the dependency graph-based model to fail. Nev-
ertheless, the RGAT model, based on reconstructing dependency
trees, can succeed due to its ability to shorten syntactic distances
between viewpoints and aspects. Additionally, the methods based
on dependency graphs and attention mostly failed in the third
example due to a lack of explicit opinion information. Conversely,
the DualGCN model is unaffected because its semantic module
(SemGCN) resolves semantic connections between words. Our
proposed AMS-GCN can solve multifaceted sentences and accom-
modate syntactic and semantic information by extracting detailed
sentiment features from more complex sentences.

5. Conclusion

In this paper, we propose a novel adaptive marker segmenta-
tion graph convolutional network to improve aspect-based sen-
timent analysis. After integrating the marker information from
two identical datasets, we first processed the word marker in-
formation and utilized the AMS module to perform adaptive
segmentation. Two types of word marker information are fed into
the bi-syntax-aware module and the semantic auxiliary module
to obtain syntactic and semantic information. In the bi-syntax-
aware module, we employ both the composition and syntax trees
to get syntactic information. Moreover, we design an aspect-
related graph in the inter-encoder to contextually model cross-
aspect relationships. Finally, we construct dependency graphs
with the attention score matrix in the semantic module to re-
model aspects and contexts, thereby obtaining additional se-
mantic association information. The experimental results show
that our proposed model achieves state-of-the-art performance
on four benchmark datasets. In the future, we plan to include
auxiliary information, such as external knowledge, to improve the
analytical performance of the ABSA task model.
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Fig. 11. Attention visualization of two sentences.
Table 4
Case studies of our AMS-GCN model compared with the state-of-the-art baselines. The notations P, N and O represent positive, negative and neutral sentiment,
respectively.

# Review IAN MGAN RGAT DualGCN AMS-GCN

1 The falafal was rather over cooked and dried but

the chicken was fine!

(P×, P✓) (P×, P✓) (N✓, P✓) (N✓, P✓) (N✓, P✓)

2 The music which is sometimes a little too heavy
for my taste.

(N✓) (N✓) (N✓) (P×) (N✓)

3 Entrees include classics like lasagna ,

fettuccine Alfredo and chicken parmigiana .

(P×, P×,O✓,O✓) (P×, P×,O✓,O✓) (N×,N×, P×, P×) (O✓, P×,O✓,O✓) (O✓,O✓,O✓,O✓)

4 From the speed to the multi touch gestures

this operating systems beats Windows easily.

(O×,O×, P✓,N✓) (O×,O×, P✓,N✓) (P×,O×, P✓,N✓) (P✓, P✓, P✓,O✓) (P✓, P✓, P✓,O✓)

5 The food is all-around good, with the rolls

usually excellent and the sushi/sashimi not quite
on the same level .

(P✓,O×,N×) (P✓,O×,N×) (P✓, P✓,N×, ) (P✓, P✓,N×) (P✓, P✓,O✓)
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