高杰维

个人简介

追求真理,实事求是。

工作经历

2023.09-至今 西华大学机械工程学院 讲师 2023.12-至今 西南交通大学力学与航空航天学院 博士后(马钢交材股份联培) 2022.03-2023.04 德国联邦材料研究与测试研究所 访问学者 2020.03-2023.08 电子科技大学机械与电气工程学院 博士后 2017.07-2020.02 西南交通大学牵引动力国家重点实验室 助理研究员

教育经历

2010.09-2017.06 硕博 西南交通大学 专业:材料科学与工程 2006.09-2010.06 本科 西南交通大学 专业:材料科学与工程

研究方向

部件安全

研究内容1:部件失效机理与损伤容限评价

研究内容2:部件疲劳断裂行为与可靠性设计方法

研究内容3:基于服役适用性的部件表面工程设计与评价


学术成果

[1]     Jie-Wei Gao, Xiang-Nan Pan, Jing Han, et al. Influence of artificial defects on fatigue strength of induction hardened S38C axles. International Journal of Fatigue, 139(2020)105746.

[2]     Jie-Wei Gao, Guang-Ze Dai, Qiu-Ze Li, et al. Fatigue assessment of EA4T railway axles under artificial surface damage. International Journal of Fatigue, 146(2021)106157.

[3]     Jie-Wei Gao, Ming-Hua Yu, Ding Liao, et al. Fatigue and damage tolerance assessment of induction hardened S38C axles under different foreign objects. International Journal of Fatigue, 149(2021)106276.

[4]     Jie-Wei Gao, Ming-Hua Yu, Ding Liao, et al. Foreign object damage tolerance and fatigue analysis of induction hardened S38C axles. Materials & Design, 202(2021)109488.

[5]     Jie-Wei Gao, Rui-Peng Han, Shun-Peng Zhu, et al. Failure causes and hardening techniques of railway axles–a review from the perspective of structural integrity. Engineering Failure Analysis, 141(2022)106656.

[6]     Jie-Wei Gao, Xin Dai, Shun-Peng Zhu, et al. Influence of induction hardening on the damage tolerance of EA4T railway axles. Engineering Failure Analysis,143(2022)106916.

[7]     Ding Liao, Jie-Wei Gao*, Shun-Peng Zhu, et al. Fatigue behaviour of EA4T notched specimens: Experiments and predictions using the theory of critical distance. Engineering Fracture Mechanics, 285(2023)109269.

[8]     Jie-Wei Gao, Ding Liao, Hai Zhao, et al. Fatigue behavior assessment of heavy-duty freight railway axles under different heat treatments. Engineering Failure Analysis, 164(2024)108654.

[9]     Minnan Zhang, Jiewei Gao, Ruipeng Han, et al. Tribological Properties of AISI 52100 Bearing Steel under Different Sliding Distance and Normal Force Conditions. Journal of Materials Engineering and Performance, (2024)1-13.

[10]  Minnan Zhang, Jiewei Gao, Ruipeng Han, et al. Influence of laminar plasma surface quenching on the microstructure and corrosion resistance of AISI 52100 bearing steel. Materials Letters, 372(2024)136954.

[11]  Minnan Zhang, Deping Yu, Jiewei Gao, et al. Influence of Laminar Plasma Surface Quenching on the Tribological Properties of AISI 52100 Bearing Steel. Journal of Materials Engineering and Performance, 33(2024)7999-8014.

[12]  Jin-Chao He, Shun-Peng Zhu, Jie-Wei Gao, et al. Microstructural size effect on the notch fatigue behavior of a Ni-based superalloy using crystal plasticity modelling approach. International Journal of Plasticity,172(2024)103857.

[13]  Ding Liao, Shun-Peng Zhu, Jie-Wei Gao, et al. Generalized strain energy density-based fatigue indicator parameter. International Journal of Mechanical Sciences, 254(2023)108427.

[14]  Qingsong Zhang, Zhenyu Zhu, Jiewei Gao, et al. Effect of Anisotropy and Off-Axis Loading on Fatigue Property of 1050 Wheel Steel. Acta Metallurgica Sinica, 53(2017)307-315.

[15]  Lei Zhang, Xingmin Huang, Yuanbo Guo, Yanhua Wang, Jiewei Gao. Effect of ART‐Annealing Conditions on Microstructural Regulation and Deformation Behavior of 0.17 C–9Mn–3.5 Al TRIP‐Aided Steel. steel research international, 88 (2017) 1600410.

[16]  Yiwen Peng, Junwen Zhao, Yifeng Liu, Ruipeng Han, Zhiwei Liu, Jiewei Gao. Galvanic corrosion between Al–Zn–Mg–Cu alloy and stainless steel in the salt-spray atmosphere. Materials Chemistry and Physics, 294(2023)127009.

[17]  Xue-Kang Li, Si-Jia Chen, Shun-Peng Zhu, Ding Liao, Jie-Wei Gao. Probabilistic fatigue life prediction of notched components using strain energy density approach. Engineering Failure Analysis, 124 (2021)105375.

[18]  Jin-Chao He, Shun-Peng Zhu, Ding Liao, Xiao-Peng Niu, Jie-Wei Gao, Hong-Zhong Huang. Combined TCD and HSV approach for probabilistic assessment of notch fatigue considering size effect. Engineering Failure Analysis, 120(2021)105093.

[19]  Lei Xu, Guangze Dai, Xingmin Huang, Junwen Zhao, Jing Han, Jiewei Gao. Foundation and application of Al–Zn–Mg–Cu alloy flow stress constitutive equation in friction screw press die forging. Materials & Design, 47(2013)465-472.

[20]  高杰维, 余明华, 朱顺鹏, . 高速列车S38C车轴外物致损模拟与疲劳性能研究. 机械工程学报, 2022,58(24):178-187.

[21]  刘里根, 肖棚, 高杰维*, . 铁路车轴表面强化技术研究与应用. 表面技术, 2022, 10: 1-28.

[22]  高杰维, 戴光泽, 赵君文, . 压痕对车轴钢疲劳极限的影响. 工程科学学报, 2016, 38(6): 827-833.

[23]  高杰维, 戴光泽, 梁树林, . 压痕对表面感应淬火中碳钢疲劳性能的影响. 材料热处理学报, 2016, 37(9): 183-189.

[24]  高杰维, 赵君文, 徐磊, . 压痕对氮碳共渗S38C钢疲劳性能的影响. 材料热处理学报, 2015, 36(12): 217-222.

[25]  高杰维, 张鲲, 徐磊, . 7A04-T6铝合金在氯化钠溶液中的腐蚀行为及其对拉伸性能的影响. 腐蚀与防护, 2014, 35(3): 239-243+247.

[26]  吴鹏程, 高杰维, 赵海, .人工缺陷下感应淬火重载铁路车轴损伤容限评价.表面技术,1-17[2024-02-27].

[27]  刘里根, 高杰维, 肖棚, . 表面滚压处理对EA4T车轴钢疲劳性能的影响. 工具技术, 2023, 57(02): 27-32.

[28]  肖棚, 高杰维, 刘里根, . 激光熔覆修复EA4T车轴钢显微组织和强度评价. 材料导报, 2022, 36(7): 115-121.

[29]  余明华, 高杰维, 刘里根, . 外物损伤对S38C车轴钢疲劳性能的影响. 材料导报, 2021, 35(20): 92-98.

[30]  卜玮杰, 高杰维, 戴光泽, . 人工缺陷对S38C车轴钢疲劳极限的影响. 机械工程材料, 2020, 44(5): 16-20.

[31]  牛晓鹏, 朱顺鹏, 高杰维, . 多源不确定性下叶盘结构疲劳可靠性分析与优化设计. 推进技术, 2022, 43(2): 228-236.


教学工作

荣誉奖励

社会兼职