Tang, Hong-Yuan

Personal profile

Dr. Hongyuan Tang is the back-up of academic and technical leaders in Sichuan Province, high-level overseas talent in Sichuan Province, and fellow of International Institute for FRP in Construction (IIFC). He is a reviewer of the Science and Technology Progress Awards and science and technology projects in Zhejiang Province, Hebei Province, Sichuan Province and Chongqing city. As the first author and corresponding author, he has more than 90 publications, of which more than 30 are indexed by SCI and EI. He won the third prize of Science and Technology Progress Award of Sichuan Province in 2018. Professor Tang’s research interests encompass the repair and strengthening of concrete, timber and metallic structures with advanced composite materials, as well as sustainable materials development.

Work experience

Work Experience: A visiting fellow at North Dakota State University; A visiting fellow at University of Pittsburgh; A professor at Xihua University; A lecturer at Nanchang University; An administrator in the 3rd Engineering Bureau of CSCEC .

Education experience

Professional Education: Ph. D., Southeast University; M. E., Nanchang University; Bachelor, Kunming University of Science and Technology.

Research Direction

Research interests:

Ÿ   Progressive collapse resistance of prefabricated RCS frame structure system

Ÿ   Steel structures and CFSTs strengthened with CFRP


Academic Achievements

Publications (last five years/partial list):

[1]    Tang H Y, Wang H X, Liu Y*, et al. Behaviour of CFRP confined square concrete-filled stainless-steel tubular columns under uni-axial compression [J]. Thin-Walled Structures, 2023,183:110440.

[2]    Tang H Y*, Liu R Z, Hou L J, et al. Research on compressive behavior of CFRP-confined CFDST stub columns with square stainless steel outer tube [J]. Structures, 2023,48:450-464.  

[3]    Tang H YHou L J, Yuan Z J, et al. Eccentric compressive behavior of square concrete-filled stainless steel tube (CFSST) stub columns [J]. Structures, 2023,55:1920-1935. 

[4]    Tang H Y*, Zou X, Yue Z Y, et al. Study on compressive behavior of CFRP-confined concrete-filled double-skin stainless  steel tube stub columns [J]. Ocean Engineering, 2023,271:113735.

[5]    Tang H Y, Qin J Y, Liu Y, Chen J L. Axial compression behaviour of circular and square UHPC-filled stainless steel tube columns [J]. Journal of Constructional Steel Research, 2023, in press.

[6]   Tang H Y*Qin J Y, Yang H, et al. Analytical and experimental investigation on axial compression capacity of carbon fiber-reinforced plastic-confined concrete-filled double-skin steel tube stub columns [J]. Advances in Structural Engineering, 2023, DOI:10.1177/13694332231190710.

[7]    Tang H Y*, Tan H F, Ge S S, et al. Comprehensive experimental database and analysis of circular CFDST stub columns: A review [J]. Frontiers of Structural and Civil Engineering, 2023, in press.

[8]    Lang L, Qin Y Z, Tang H Y, et al. Effect of reflected stress wave on dynamic crack propagation and arrest behavior of sandstone specimens under impact loading [J]. Theoretical and Applied Fracture Mechanics, 2023,123:10372.

[9]    Lu Y J, Lv Q F, Sun T F, Liu Y, Tang H Y. Experimental and numerical studies on hysteretic behavior of a novel bending-friction coupled damper [J]. Thin-Walled Structures, 2023, 183:110385.

[10]    Tang H Y*, Wang H X, Liu R Z, et al. Axial compression behavior of CFRP-confined square concrete-filled double skin tube stub columns with stainless steel outer tube [J]. Ocean Engineering, 2022,266:112871.

[11]    Tang H Y*, Chen J L, Yue Z Y, et al. Theoretical analysis on the ultimate bearing capacity of CFRP-confined CFSST stub columns [J]. Archives of Civil and Mechanical Engineering, 2021,22(1):26.

[12]    Tang H Y*, Liu R Z, Zhao X, et al. Axial Compression Behavior of CFRP-Confined Rectangular Concrete- Filled Stainless Steel Tube Stub Column [J]. Frontiers of Structural and Civil Engineering, 2021, 15(5): 1144-1159.

[13]Tang H Y*, Chen J L, Fan L Y, et al. Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial compression [J]. Thin-Walled Structures, 2020, 146:106483.

[14]Tang H Y*, Deng X Z, Jia YG, et al. Study on the progressive collapse behavior of fully bolted RCS beam-to-column connections [J]. Engineering Structures, 2019,199:109618.

[15]Tang H Y, Deng X Z, Lin Z B*, et al. Analytical and experimental investigation on bond behavior of CFRP-to-stainless steel interface [J]. Composite Structures, 2019, 212:94-105.

[16]Xu Y, Tang H Y*, Chen JL, et al. Numerical analysis of CFRP-confined concrete-filled stainless steel tubular stub columns under axial compression. Journal of Building Engineering [J]. 2021, 37: 102130.

[17]Pan Y*, Guo R, Li H Y, Tang H Y*, et al. Analysis-oriented stress–strain model for FRP-confined concrete with preload [J]. Composite Structures, 2017, 166(15):57-67.

[18]Pan Y*, Guo R, Li H Y, Tang H Y*, et al. Study on stress-strain relation of concrete confined by CFRP under preload [J]. Engineering Structures, 2017, 143:52-63.

[19]Zhou X J, Mou T M, Tang H Y*, et al. Experimental study on ultra-high strength concrete filled steel tube short columns under axial load [J]. Advances in materials and engineering, 2017.

[20]Tang H Y*, Deng XZ and Zhou XJ. Experimental study on behavior of steel channel strengthened with CFRP [J]. Curved and Layered Struct., 2017, 4:288-298.

[21]Tang H Y*, Wang R J, Peng C M. Simulation of Uncertainties in Shrinkage and Creep Effects in Concrete [J]. Emerging Materials Research, 2017, 6(1):210-213.

[22]Tang H Y*, Wang C J, Wang R J. Enhancing Stability of Thin-Walled Short Steel Channel Using CFRP under Eccentric Compression [J]. International Journal of Polymer Science, 2016.

[23]Tang H Y*, Yang D, Wang C J, et al. Anti-floating problem and retrofit measures for a damaged basement [J]. Materials Research Innovations, 2015, 19(8):219-222.

[24]Tang H Y*, Yue Z Y, Liu R Z, et al. Axial capacity of CFRP-strengthened steel square short columns with hollow sections [C]. The 7th Asia-Pacific Conference on FRP in Structures, APFIS 2019, December 10-13.

[25]Tang H Y*, Liao N, et al. Appraisal and Strengthening for a factory building subjected to fire disaster [J]. Disaster Advances. 2012, 5(4):1418-1423.

[26]唐红元胡晓维刘烨方形不锈钢管超高性能混凝土(UHPC)短柱轴压性能研究[J/OL].工程力. https://kns.cnki.net/kcms/detail/11.2595.O3.20230410.1120.016.html. 

[27]唐红元曾跃佳刘烨圆不锈钢管超高性能混凝土短柱轴压性能研究[J/OL].工程力学https://kns.cnki.net/kcms/detail/11.2595.O3.20230414.0959.002.html.

[28]唐红元马梦淋杨媛*, 正交胶合木销槽承压强度试验研究建筑结构学报,2022,43(5):175-184.

[29]唐红元黄靖翔,廖静,等梁贯通型RCS组合结构梁柱节点抗连续倒塌性能研究[J]. 土木工程学报, 2020, 53(S2):1-6.

[30]唐红元葛思思付祥外贴CFRP布加固不锈钢和普通钢方管短柱轴向承载力研究[J]. 建筑结构学报,2020, 41(S1):98-108.

[31]唐红元邓雪智熊进刚柱贯通梁柱节点非对称钢筋混凝土柱-钢梁框架结构抗连续倒塌性能研究[J]. 建筑结构学报, 2021, 42(4):92-102.

[32]唐红元周祥周孝军. CFRP-不锈钢界面粘结性能试验研究[J]. 建筑结构学报,2018, 39(12):185-193.

[33]唐红元王灿军潘毅,等. CFRP加固冷弯薄壁槽钢短柱偏心受压承载力试验研究[J]. 建筑结构学报, 2017, 38(11):159-166.

[34]唐红元李政周范璐瑶矩形不锈钢管混凝土短柱轴压性能试验研究[J]. 西南交通大学学报 2022,57(4):855-864.

[35]唐红元范璐瑶赵鑫圆不锈钢管混凝土短柱轴压承载力模型研究[J]. 工程科学与技术, 2020, 52(3):10-20.(2022年高影响力论文奖

      [36]唐红元*, 廖静刘瑞忠方中空夹层不锈钢管混凝土短柱轴压性能研究[J].西南交通大学学报,2023,58(2): 421-429.



Teaching Work

Honor Rewarde

Social Appointments